World Biotechnology Congress 2018

Gingeger Fingers

The site providing information on various topics of science and nature and also on different aspects of life.......
Follow GingerFingers on

World Biotechnology Congress 2018

World Biotechnology Congress 2018 is going to be held in Berlin, Germany during  July 16-17, 2018



A New Era in Molecular Biology: “CRISPR/Cas9” and Targeted Gene Editing

A New Era in Molecular Biology: CRISPR/Cas9 and Targeted Genome Editing


The development of efficient and reliable ways to make precise, targeted changes to the genome of living cells is a long-standing goal for biomedical researchers. Recently, a new tool based on a bacterial CRISPR-associated protein-9 nuclease (Cas9) from Streptococcus pyogenes has generated considerable excitement. This follows several attempts over the years to manipulate gene function, including homologous recombination and RNA interference (RNAi). RNAi became a laboratory staple enabling inexpensive and high-throughput interrogation of gene function but it is hampered by providing only temporary inhibition of gene function and unpredictable off-target effects. Other recent approaches to targeted genome modification – zinc-finger nucleases (ZFNs), and transcription-activator like effector nucleases (TALENs) enable researchers to generate permanent mutations by introducing doublestranded breaks to activate repair pathways. These approaches are costly and time-consuming to engineer, limiting their widespread use, particularly for large scale, high-throughput studies

The functions of CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) and CRISPR-associated (Cas) genes are essential in adaptive immunity in select bacteria and archaea, enabling the organisms to respond to and eliminate invading genetic material. These repeats were initially discovered in the 1980s in E. coli, but their function wasn’t confirmed until 2007 by Barrangou and colleagues, who demonstrated that S. thermophilus can acquire resistance against a bacteriophage by integrating a genome fragment of an infectious virus into its CRISPR locus. Three types of CRISPR mechanisms have been identified, of which type II is the most studied. In this case, invading DNA from viruses or plasmids is cut into small fragments and incorporated into a CRISPR locus amidst a series of short repeats (around 20 bps). The loci are transcribed, and transcripts are then processed to generate small RNAs (crRNA – CRISPR RNA), which are used to guide effector endonucleases that target invading DNA based on sequence complementarity.

Multi-functional Super-coating Technology

Multi-functional Super-coating Technology


The Korea Institute of Industrial Technology  announced  that it has developed a multi-functional super-coating technology using a nanocomposite structure. The research team made a nano-sized composite structure by mixing the crystal particles and amorphous particles in an ultra-high-temperature plasma state. This newly developed super coating film with nanocomposite structure is very effective against abrasion, heat, corrosion, and oxidation depending on the mixing method. The research team has done this research for over two years. Professor Park said, “Coating technology was originally developed to make fighter jet parts, but it is a high-value source technology that can be applied throughout machine parts.”


Watch “CRISPR: Gene editing and beyond” on YouTube

Gene Editing….

Arsenic Contamination in Water

Drinking water may contribute significantly to oral intake in regions where there are high arsenic concentrations in well-water or river-water or mine drainage areas. The concentration in ground water depends on the arsenic content of the bed-rock. Arsenic contamination is spreading fast and entering the food chain through farm products in the region. As people take contaminated water along with contaminated food, the chances of damage become greater. The clinical picture of chronic poisoning with arsenic varies widely. It is usually dominated by changes in the skin and mucous membranes and by neurological, vascular and haematogical lesions. Arsenic and its inorganic compounds have been known to be neurotoxic. The skin is a common critical organ in people exposed to inorganic arsenical compounds. Eczematoid symptoms develop with varying degrees of severity.  Hyperkerotosis, warts and melanosis of the skin are the most commonly observed lesions in chronic exposure. Arsenic contamination in water, vegetables, rice and other foods is spreading as reported in the Indian Parliament. An editorial report was published in the Hindustan Times dated 27th December, 2017.



Nanotechnology: Characterization of Nanomaterials using Single-Particle ICP-MS

via Nanotechnology: Characterization of Nanomaterials using Single-Particle Inductively Coupled Plasma Mass Spectrometry

sp ICPMS Perkin

Watch “Robert Koch (1843-1910)” on YouTube

DNA Metabarcoding: A Rapid Method for Biodiversity Assessment


DNA metabarcoding refers to the automated identification of multiple species from a single bulk sample containing entire organisms. This offers unprecedented scientific and operation opportunities in order to understand biodiversity distribution and dynamics in a better way. Managing the health of global ecosystems requires detailed inventories of species and a good understanding of the patterns and trends of biodiversity. Evolutionary and ecological studies often rely on our ability to identify the species involved in the process under investigation or our capacity to provide robust biodiversity estimates. For about three centuries, the acquisition of biodiversity data was based on morphological characterization of plants and animals. The idea of identifying species on the basis of molecular markers emerged soon after the advent of molecular biology. Early methods involved the use of hybridization, restriction enzyme digestion or other molecular probes. DNA-based species identification was introduced by Arnot et al. and further development, standardized and advanced by Hebert et al. The ability to extract and store DNA for prolonged periods of time provides a unique opportunity to assess the evolution of biodiversity over time in relation to global change and to develop concrete measures to reserve these features. For more details, please click here.
DNA Metabarcoding

Nanotechnology: An Agricultural Paradigm

This book highlights the implications of nanotechnology and the effects of nanoparticles on agricultural systems, their interactions with plants as well as their potential applications as fertilizers and pesticides. It also discusses how innovative, eco-friendly approaches to improve food and agricultural systems lead to increased plant productivity. Further, it offers insights into the current trends and future prospects of nanotechnology along with the benefits and risks and their impact on agricultural ecosystems. contentNanomaterials in agriculture reduce the amount of chemical products sprayed by means of smart delivery of active ingredients; minimize nutrient losses in fertilization; and increase yields through optimized water and nutrient management. There is also huge potential for nanotechnology in the provision of state-of-the-art solutions for various challenges faced by agriculture and society, both today and in the future.

Chapter 12

Nanotechnology for Enhancing Crop Productivity

Suresh Kaushik and S.R. Djiwanti

Agriculture is currently facing a number of challenges like low nutrient use efficiency, stagnation in crop yields, multi-nutrient deficiencies, climate change, and water availability. One of the frontier technologies like nanotechnology can be explored to detect precisely and supply the accurate quantity of plant nutrients and pesticides to enhance crop productivity in agriculture. Nanotechnology involves the designing, production, characterization and application of devices, structures, and systems by controlling the size and shape at nanometer scale. Nanotechnology using nanodevices and nanomaterials provides new avenues for potential novel applications in agriculture such as efficient delivery of pesticide and fertilizer using nanomaterial-based formulations such as nano-fertilizers, nano-pesticides, and nano-herbicides. New innovative smart delivery systems and sensitive nano-biosensor-based technology have great potential to solve the problems faced in crop production. This chapter summarizes some new developments in smart delivery systems and nano biosensor-based technology for enhancing crop productivity.


Blog Stats

  • 868 hits
May 2018
« Apr    
%d bloggers like this: