Home » Science » Biochemistry » A New Era in Molecular Biology: “CRISPR/Cas9” and Targeted Gene Editing

A New Era in Molecular Biology: “CRISPR/Cas9” and Targeted Gene Editing

Gingeger Fingers

The site providing information on various topics of science and nature and also on different aspects of life.......
Follow GingerFingers on WordPress.com
Advertisements

A New Era in Molecular Biology: CRISPR/Cas9 and Targeted Genome Editing

GenomeEditing

The development of efficient and reliable ways to make precise, targeted changes to the genome of living cells is a long-standing goal for biomedical researchers. Recently, a new tool based on a bacterial CRISPR-associated protein-9 nuclease (Cas9) from Streptococcus pyogenes has generated considerable excitement. This follows several attempts over the years to manipulate gene function, including homologous recombination and RNA interference (RNAi). RNAi became a laboratory staple enabling inexpensive and high-throughput interrogation of gene function but it is hampered by providing only temporary inhibition of gene function and unpredictable off-target effects. Other recent approaches to targeted genome modification – zinc-finger nucleases (ZFNs), and transcription-activator like effector nucleases (TALENs) enable researchers to generate permanent mutations by introducing doublestranded breaks to activate repair pathways. These approaches are costly and time-consuming to engineer, limiting their widespread use, particularly for large scale, high-throughput studies

The functions of CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) and CRISPR-associated (Cas) genes are essential in adaptive immunity in select bacteria and archaea, enabling the organisms to respond to and eliminate invading genetic material. These repeats were initially discovered in the 1980s in E. coli, but their function wasn’t confirmed until 2007 by Barrangou and colleagues, who demonstrated that S. thermophilus can acquire resistance against a bacteriophage by integrating a genome fragment of an infectious virus into its CRISPR locus. Three types of CRISPR mechanisms have been identified, of which type II is the most studied. In this case, invading DNA from viruses or plasmids is cut into small fragments and incorporated into a CRISPR locus amidst a series of short repeats (around 20 bps). The loci are transcribed, and transcripts are then processed to generate small RNAs (crRNA – CRISPR RNA), which are used to guide effector endonucleases that target invading DNA based on sequence complementarity.

Advertisements

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google+ photo

You are commenting using your Google+ account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

Archives

Blog Stats

  • 1,087 hits
March 2018
M T W T F S S
« Jan   Apr »
 1234
567891011
12131415161718
19202122232425
262728293031  
%d bloggers like this: