Home » Science » Toxicology

Category Archives: Toxicology

Inductively Coupled Plasma-Mass Spectrometry : A Rapid Technique for Multi-Elements Determination at the Ultra-Trace Level



Inductively coupled plasma mass spectrometry (ICP-MS) is a type of mass spectrometry which is capable of detecting metals and several non-metals at concentrations as low as one part per trillion. ICP-MS is undoubtedly the fastest growing trace element technique available today. It allows determination of elements with atomic mass ranges 7 to 250. It is able to detect the elements upto part per trillion levels and this ability to carry out rapid multi-elements  determination at the ultra-trace level  have made it very popular in diverse range of applications areas  including environment, geochemical, semiconductor, metallurgical, nuclear, chemical, climatic and biotechnology. In recent years, industrial and biological monitoring has presented major need for metal analysis by ICP-MS. Other uses is in the medical and forensic field, specifically, toxicology and heavy metal poisoning.

For basics of ICP-MS working, please click on the following link…..



Arsenic and its Effects on Human Health

Arsenic has different toxicological properties dependent upon both its oxidation state for inorganic compounds as well as the different toxicity levels exhibited for organic arsenic compounds. As a consequence of the many different uses of arsenic and arsenicals, there is wide spectrum of situation in which human may be exposed to the element. The clinical picture of chronic poisoning with arsenic varies widely.



Phytoremediation of toxic metals from contaminated soils via biotechnology

The major challenge facing society in the twenty-first century is to feed and provide for increasing numbers of people while protecting human health and the environment. To accomplish this we must combine traditional technologies with modern technologies. Contamination of soil and water by industrial effluents and sewage waste is one of the major problems faced by the modern world. The intensive use of potentially toxic compounds by industry and past failures to properly dispose of hazardous material particularly toxic metals now necessitate new methods for the remediation of polluted soil and water. Research efforts are currently being directed at the development of being less invasive, more economical plant-based phytoremediation technology in removing toxic pollutants particularly toxic metals. Plants have a remarkable ability to extract and concentrate elements and compounds from air, water, and soil. They spend most of their lives as solar-driven pumping stations and chemical factories. Recently, attempts have been made to harness this ability for purposes of environmental remediation. The term phytoremediation has been introduced to describe this process. Phytoremediation is the use of plants to remove pollutants from the environment or to render them harmless. This is being developed as a technology for remediating volatile and nonvolatile organic and toxic metal pollution. However, removal of toxic metals from soils is an area in which phytoremediation may have a particular impact because of the lack of alternative technologies that are affordable and effective. Plants that hyperaccumumulate toxic metals are rare. Such hyperaccumulators are taxonomically widespread throughout the plant kingdom. More than 350 species of plant are known to accumulate metal such as nickel, zinc, copper, cadmium, selenium or manganese in high levels. For example, naturally occurring hyperaccumulating plants like Thlaspi caerulescens, Serbetia accuminata, Alyssum and Astragolum species which acquire in their tissues high levels of metals such as cadmium, zinc, nickel, have been shown to sequester more than 1% of their dry mass of heavy metals from contaminated soil. Over the past 20 years, many crop and related weed species have been screened for metal uptake, translocation and tolerance. Much effort has been focussed on the Brassica family to which many hyperaccumulators species belong. However, the potential for application of hyperaccumulators in phytoremediation is limited by several factors such as slow growing, generate insufficient biomass for practical large-scale application, and demonstrate affinity for only one or two toxic elements.

A fundamental understanding of the biochemical processes involved in plant metal uptake, translocation and hyperaccumulation in normal and metals hyperaccumulators, regulatory control of these activities, and the use of tissue-specific promoters offers great promise that use of molecular biology tools can give scientist the ability to develop effective and economic phytoremediation transgenic plants for toxic metals. So, a long term effort should be directed towards developing a “molecular tool box” composed of genes valuable for phytoremediation.

Arsenic Speciation Analysis using High Performance Liquid Chromatography-Inductively Coupled Plasma-Mass Spectrometry

Speciation is the analytical activity of identifying and/or measuring in a sample the quantity of one or more individual chemical species.  Arsenic has different toxicological properties dependent upon both its oxidation state for inorganic compounds as well as the different toxicity levels exhibited for organic arsenic compounds. HPLC is the technique of choice in modern speciation analyses due to their resolution and the ease with which they are coupled to ICP-MS, allowing for on-line separation and detection.

High Performance Liquid Chromatography-Inductively Coupled Plasma-Mass Spectrometry

High Performance Liquid Chromatography-Inductively Coupled Plasma-Mass Spectrometry

%d bloggers like this: